Тепло и холод, касание и боль. Нобелевская премия по физиологии и медицине 2021
Нобелевскую премию 2021 года по физиологии и медицине получили ученые из США Дэвид Джулиус (David Julius) и Ардем Патапутян (Ardem Patapoutian) за открытия рецепторов температуры и осязания.На уровне органов и клеток исследования ощущений велись долгие годы. Уже в XIX веке физиологи знали, что ощущение прикосновения, тепла или холода формируются благодаря чувствительным нервным клеткам в коже, от которых по нервам импульсы передаются в мозг. Джозеф Эрлангер и Герберт Гассер получили Нобелевскую премию по физиологии и медицине в 1944 году за открытие дифференцированных типов сенсорных нервных волокон, которые реагируют на различные раздражители, например, в ответ на болезненное и безболезненное прикосновение. Но до работ Джулиуса и Патапутяна оставалось неизвестным, как температура или механический стимул превращается в электрический импульс в нервной клетке. Ответ надо было искать на молекулярном уровне.
Уроженец Нью-Йорка Дэвид Джулиус учился в Массачусетском технологическом институте, затем работал в Калифорнийском университете в Беркли, Колумбийском университете, а сейчас он профессор Калифорнийского университета в Сан-Франциско. Молекулярный биолог армянского происхождения Ардем Патапутян родился в Бейруте, где начал учебу в Американском институте. В 1986 году он переехал США, получил степень бакалавра в области клеточной биологии и биологии развития в Калифорнийском университете в Лос-Анджелесе, затем защитил диссертацию в Калифорнийском технологическом институте. Далее Патапутян работал в Калифорнийском университете в Сан-Франциско, Институте Скриппса, Исследовательском центре Новартис, Медицинском института Говарда Хьюза. В данный момент он вновь работает в Институте Скриппса.
Дэвид Джулиус и Ардем Патапунян
Обнаружить рецепторы температурной чувствительности помогло одно их свойство – они активируются не только при воздействии повышенной или пониженной температуры, но и при контакте с определенными химическими веществами. Во второй половине 1990-х Джулиус исследовал реакцию нервных клеток на капсаицин – вещество, которое придает перцу его жгучесть. Ему было известно, что чувствительность к капсаицину проявляют нейроны спинальных ганглиев – чувствительных нервных узлов спинномозговых нервов. Джулиус и его коллеги получили библиотеку комплементарных ДНК тех генов, которые экспрессируются в нейронах спинальных ганглиев, и испытали эти гены в клеточной культуре HEK 293, клетки которой не реагируют на капсаицин. В 1997 году им удалось найти тот единственный ген, который обеспечивал реакцию на капсаицин.
Ген и соответствующий ему белок получили название TRPV1. У людей данный ген расположен на коротком плече 17-й хромосомы. Белок представляет собой «ионный канал», то есть он дает возможность ионам перемещаться сквозь клеточную мембрану и поддерживает разность потенциалов на двух сторонах мембраны. Когда Джулиус исследовал способность этого белка реагировать на тепло, он понял, что обнаружил рецептор, чувствительный к теплу, который активируется при высокой температуре, воспринимаемой как болезненная (выше 43°C).
Структура рецептора TRPV1
В последующие годы был открыт еще ряд ионных каналов, активизирующихся в других диапазонах температур: TRPM3, TRPA1, TRPM2. Дэвид Джулиус и Ардем Патапутян независимо друг от друга обнаружили ионный канал TRPM8, который активизируется не при высокой, а при низкой (около –20°C) температуре. Данный белок реагирует также на ментол, что и позволило его обнаружить (вспомним, что вкус ментола вызывает у человека ощущение прохлады, тогда как жгучий перец, содержащий капсаицин, вызывает чувство жара). В 2007 году Джулиус и его коллеги получили культуру нервных клеток с выключенным каналом TRPM8 и подтвердили, что эти клетки не активизируются ни ментолом, ни пониженной температурой. Затем они получили генетически модифицированных мышей с инактивированным рецептором TRPM8 и показали, что в определенном диапазоне температур эти мыши утратили способность отличать прохладное от теплого. В эксперименте группы Джулиуса мышь помещался в камеру, разделенную на два отсека. В одном из них пол подогревался до 30°C, в другом – лишь до 20°C. Обычной мыши было более комфортно находиться на теплом полу, поэтому, когда она, исследуя камеру, заходила в отсек с температурой пола 20°C, она тут же отступала назад. Мыши с неработающим геном TRPM8 проводили примерно одинаковое количество времени в двух отсеках. Они вновь начинали ощущать разницу температур, только когда пол во втором отсеке становился холоднее 10°C.
Видеосъемка эксперимента, выявившего утрату температурной чувствительности у мышей с отключенным геном TRPM8
Семейство белков, которое включает белки TRPV1, TRPM8 и многие другие, получило название «каналы с транзиторным рецепторным потенциалом» (transient receptor potential channel, TRP). Все они пропускают в клетку ионы кальция, натрия и магния, создавая необходимую для передачи нервного импульса разность потенциалов. Ионные каналы TRP выполняют большое количество функций в нервной системе. В частности они связаны с ощущением боли. Сейчас ученые разрабатывают средства от боли, основанные на блокировке рецептора TRPV1.
Ионные каналы реагируют не только на температурные, но и на механические стимулы. Впервые обнаружить рецептор, активируемый при механическом воздействии, смогли ученые Института Скриппса под руководством Ардема Патапутяна. Они выделили 72 гена, которые могли бы отвечать за механочувствительность, и в дальнейшем поочередно отключали эти гены у исследуемых клеток. После напряженных поисков они идентифицировали ген, кодирующий ионный канал, который получил название Piezo1 (от греческого
Ошибка в тексте? Выделите её мышкой и нажмите: Ctrl + Enter
Выделите любой фрагмент прямо в тексте статьи и нажмите Ctrl+Insert
Мы весьма признательны всем, кто использует наши тексты в блогах и форумах. Пожалуйста, уважайте труд журналистов: не перепечатывайте в блогах статьи целиком (они всегда доступны по этому адресу), не забывайте ставить ссылки на полный текст на нашем сайте.
|
||||